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OUTLINE

Defining a Regional Climate System Model Framework

Very brief review of the CEC/EPRI Hydrologic Impacts Study
Projected climate impacts at the surface

New model development and comparisons

Coupled MM5-CLM2 snow simulation analysis with observations.

Coupled CLM2-PARFLOW water table simulation analysis with
observations.

Summary and Concluding Remarks
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REGIONAL CLIMATE SYSTEM MODELING FRAMEWORK
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GCM-PROJECTED CALIFORNIA MEAN AREA

TEMPERATURE AND PRECIPITATION END MEMBERS
HadCM2 — High Sensitivity, relatively Warm/Wet
PCM - Low Sensitivity, relatively Cool/Dry
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S1x Watershed Study Basins

Smith - Jed Smith
’ Sacramento-Delta

“ Feather - Oroville

F Amer - NF Dam

- Pohono Br

CEC-EPRI Climate Impacts Study

*Collaboration with the CA-NV River Forecast Center/INWS/NOAA
*Outputs were used as CALSIM and CALVIN Monthly Forcing Data
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Streamflow: GCM-Based

Warm-Wet , , Cool-Dry
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Ratio of Mean-Monthly Projected Snow Water Equivalent to Baseline Snow Water Equivalent
SIGNIFICANT FINDING IS ~50% SNOW WATER EQUIVALENT ~2100 FOR ALL CASES
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Analysis of Heat Based on Global Climate System Model
Projections Using High and Med-Range Emission Scenarios

 Emission scenarios:
— High emission scenario: A1fi
~970 ppm CO, by 2100, 6 x 1990 levels
— Medium Range Emission Scenario: B1
~550 ppm CO, by 2100, 2 x 1990 levels

* Global Climate System Models
— Parallel Climate Model (PCM) Low Sensitivity
— Hadley Centre Climate Model (HadCM3) Medium Sensitivity

- Analysis of heat
— Exceedence Probability for 50% and 5% occurrence
— Number of three consecutive hot days

2004 Study
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HadCM3 (solid) and PCM (dashed) projected scenarios diverge after ~2050.

The Summer temperatures increase at a greater rate than the Winter temperatures.
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Shasta Dam
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Increase in the number of Heat Waves at ~2100

PCM HadCM3 PCM HadCM3
B1 Alfi B1 Ali  B1 Ali Bl  Aflfi
1961-1990
Heatwave days
Los Angeles days 12 28 35 24 36 44 76 47 95
Sacramento days 58 91 101 93 104 109 134 115 138
Fresno days 92 M3 120 111 116 126 147 126 149
El Centro days 162 | 185 185 176 180 191 213 197 218

... GREATER THAN 50% SNOW LOSS ~2100
Alfi — Fossil Energy Intensive Future

UC-Berkeley National Lab



Model development ...

«  MMS land surface schemes characterize water and energy exchanges
between the atmosphere and land surface, but lack sufficiently explicit

and physical descriptions for snow processes and vegetation dynamics.

*To date, no land surface schemes couple deep groundwater processes,
providing feedbacks and sensitivities to both the atmosphere and deep aquifers.
- Deep drainage has historically been assumed as a constant rate
BATS: 4x104 mm/s (Dickinson et al. 1986)
SiB: function of gravity based on slope (Sellers et al. 1989)
VIC: function of water table depth (Liang and Xie 2003)

‘Developing a Top-of-the-Atmosphere to Deep Groundwater System Model
provides us with the modeling tool for investigating a range of coupled
feedbacks and sensitivities in a new way.

*‘These model developments will migrate to the Weather Research and
Forecasting (WRF) model — a next generation MM5.

UC-Berkeley National Lab



Description of the Community Land Model version 2
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Observations and Model Output

Observations:

*Standard meteorological station data
*5 km x 5 km MODIS/Terra snow cover data

°4 km x 4 km SeaWiFS surface albedo data.

Model Output:

® 20km x 20km, 1 March to 31 May 2002, 1-hr data

*MM5/NOAH (Old) and MM5-CLM2 (New).

UC-Berkeley National Lab



MM5-CLM2 and MM5-NOAH: Simulation and Analysis

The domains for the Penn
State-NCAR fifth-generation
Mesoscale Model (MM5).

60km and 20km

«  The snowpack was initialized
with LDAS and SNOTEL data.

« MMS is driven by the 6-hr
NCEP/NCAR reanalysis data
during March to May, 2002.

UC-Berkeley National Lab



Geographic distribution of the SnoTel Stations in Washington

*The automated Snowpack
Telemetry (SnoTel) stations in
Washington state.

*The datasets include:

daily snow depth

surface air temperature

*precipitation

Data provided by the Western Regional Climate Center
(www.wrcc.dri.edu)

UC-Berkeley National Lab



Snowpack Simulation over the Snotel Stations
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Surface Albedo MM5-OLD (20km x 20km)

Observation (SeaWiFS)
(4kmx4km)
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Snow cover during the snow melt period
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6-hourly precipitation simulation at (-129.49°W, 51.14°N)
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CLM2-Groundwater Model Development, Simulation and Analysis
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Valdai, Russia research watershed provides an

excellent test of coupled model

» Three research watersheds in upper Volga region near St. Petersburg, Russia

— Usadievskiy, Tayozhniy and Sinaya Gnilka
— Small catchment; boreal grassland
— 18-years continuous observations wu: 00

Finlamd

* Good test for models:
— Seasonal temperature (+/-50 C)

— Deep winter snowpack oo St

— Spring thaw/snowmelt il

— Warm summer precipitation events 5 =
 Good Datasets 4 B e L

— Soil moisture, soil temperature =

— Water table ity

— Evapotranspiration " potand

— Runoff

20°00°E 25°T0°E I0T0'E

— Snow water equivalent

» Used as test bed for LSM model comparison - PILPS 2(d)
Vinnikov, et al, 1996; Schlosser, et al, 1997; Schlosser, et al, 2000; Luo, et al, 2003
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Incident Solar

Coupled model agrees with daily-averaged
observations
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“Shallow Processes” agree well between coupled and
uncoupled models, “deeper processes” do not
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Soil Moisture Predictions are quite different between the coupled and un-coupled models
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predictions and observations
highlights differences in

models.
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Summary

. The coupling of MM5 with CLM2 significantly improves the snow
depth, snow cover, and surface albedo simulations.

— MM5-NOAH snow melt is too fast due to unrealistic descriptions
of the surface energy balance. This snow melt loss causes
stronger evaporation and convective precipitation in the late
spring.

—  MM5-CLM2 snow melt generally agrees with observations due to
the more advanced snow physics. This results in lower
evaporation and little convective precipitation in late spring, as
observed.

. Coupling CLM2 with Deep Ground Water

—  Feedback and memory of the water table and “deep” ground
processes is important to the surface water and energy budgets,
especially for cases with a shallow water table.

—  Distributed model provides even more insight into coupled
processes

UC-Berkeley National Lab



Ongoing Next Steps

Advance the distributed groundwater version and apply at Valdai, at
an urban watershed, and a transect in the Central Valley (Merced River
Basin and the Grassland Area).

Address parameter scaling issues important to regional scale climate.
Implement contaminant/pollutant transport.

Begin a series of long simulations off-line to evaluate the groundwater
response.

Fully couple MM5-CLM2-Deep Groundwater and implement to the
transect in the Central Valley.

MM5-CLM2 is ready for multi-processor, high performance computing
control and projected production runs for the US at 50km and CA at 10
km spatial resolution with 6-hr archiving.

These runs will be coordinated with the CA Climate Intercomparison
Studies.

UC-Berkeley National Lab
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